[ad_1]
We just wrapped up the second year of our Technology, Innovation, and Great Power Competition class – now part of our Stanford Gordian Knot Center for National Security Innovation.
Joe Felter, Raj Shah and I designed the class to 1) give our students an appreciation of the challenges and opportunities for the United States in its enduring strategic competition with the People’s Republic of China, Russia and other rivals, and 2) offer insights on how commercial technology (AI, machine learning, autonomy, cyber, quantum, semiconductors, access to space, biotech, hypersonics, and others) are radically changing how we will compete across all the elements of national power e.g. diplomatic, informational, military, economic, financial, intelligence and law enforcement (our influence and footprint on the world stage).
Why This Class?
The return of strategic competition between great powers became a centerpiece of the 2017 National Security Strategy and 2018 National Defense Strategy. The 2021 Interim National Security Guidance and the administration’s recently released 2022 National Security Strategy make clear that China has rapidly become more assertive and is the only competitor potentially capable of combining its economic, diplomatic, military, and technological power to mount a sustained challenge to a stable and open international system. And as we’ve seen in the Ukraine, Russia remains determined to wage a brutal war to play a disruptive role on the world stage.
Prevailing in this competition will require more than merely acquiring the fruits of this technological revolution; it will require a paradigm shift in the thinking of how this technology can be rapidly integrated into new capabilities and platforms to drive new operational and organizational concepts and strategies that change and optimize the way we compete.
Class Organization
The readings, lectures, and guest speakers explored how emerging commercial technologies pose challenges and create opportunities for the United States in strategic competition with great power rivals with an emphasis on the People’s Republic of China. We focused on the challenges created when U.S. government agencies, our federal research labs, and government contractors no longer have exclusive access to these advanced technologies.
This course included all that you would expect from a Stanford graduate-level class in the Masters in International Policy – comprehensive readings, guest lectures from current and former senior officials/experts, and written papers. What makes the class unique however, is that this is an experiential policy class. Students formed small teams and embarked on a quarter-long project that got them out of the classroom to 1) identify a priority national security challenge, and then to 2) validate the problem and propose a detailed solution tested against actual stakeholders in the technology and national security ecosystem.
The class was split into three parts. Part 1, weeks 1 through 4 covered international relations theories, strategies and policies around Great Power Competition specifically focused on the People’s Republic of China (PRC) and the Communist Peoples Party (CCP). Part 2, weeks 5 through 8, dove into the commercial technologies: semiconductors, space, cyber, AI and Machine Learning, High Performance Computing, and Biotech. In between parts 1 and 2 of the class, the students had a midterm individual project. It required them to write a 2,000-word policy memo describing how a U.S. competitor is using a specific technology to counter U.S. interests and a proposal for how the U.S. should respond. (These policy memos were reviewed by Tarun Chhabra, the Senior Director for Technology and National Security at the National Security Council.)
Each week the students had to read 5-10 articles (see class readings here.) And each week we had guest speakers on great power competition, and technology and its impact on national power and lectures/class discussion.
Guest Speakers
In addition to the teaching team, the course drew on the experience and expertise of guest lecturers from industry and from across U.S. Government agencies to provide context and perspective on commercial technologies and national security.
Our class opened with three guest speakers; former U.S. Secretary of Defense James Mattis and the CIA’s CTO and COO Nand Mulchandani and Andy Makridis. The last class closed with a talk by Google ex-Chairman Eric Schmidt.
In the weeks in-between we had teaching team lectures followed by speakers that led discussions on the critical commercial technologies. For semiconductors, the White House Coordinator for the CHIPS Act – Ronnie Chatterji, and the CTO of Applied Materials – Om Nalamasu. For commercial tech integration and space, former Defense Innovation Unit (DIU) Director Mike Brown and B. General Bucky Butow – Director of the Space Portfolio. For Artificial Intelligence, Lt. Gen. (Ret) Jack Shanahan, former director of the Joint Artificial Intelligence Center. And for synthetic biology Stanford Professor Drew Endy – President, BioBricks Foundation.
Team-based Experiential Project
The third part of the class was unique – a quarter-long, team-based project. Students formed teams and developed hypotheses of how commercial technologies can be used in new and creative ways to help the U.S. wield its instruments of national power. And consistent with all our Gordian Knot Center classes, they got out of the classroom and interviewed 20+ beneficiaries, policy makers, and other key stakeholders testing their hypotheses and proposed solutions. At the end of the quarter, each of the teams gave a final “Lessons Learned” presentation and followed up with a 3,000 to 5,000-word team-written paper.
By the end of the class all the teams realized that the problem they had selected had morphed into something bigger, deeper, and much more interesting.
Team 1: Climate Change
Original Problem Statement: What combinations of technologies and international financial relationships should the US prioritize to mitigate climate change?
Final Problem Statement: How should the US manage China’s dominance in solar panels?
If you can’t see the presentation click here.
We knew that these students could write a great research paper. As we pointed out to them, while you can be the smartest person in the building, it’s unlikely that 1) all the facts are in the building, 2) you’re smarter than the collective intelligence sitting outside the building.
Jonah Cader: “Technology, Innovation and Great Power Competition (TIGPC) is that rare combination of the theoretical, tactical, and practical. Over 10 weeks, Blank, Felter, and Shah outline the complexities of modern geopolitical tensions and bring students up the learning curves of critical areas of technological competition, from semiconductors to artificial intelligence. Each week of the seminar is a crash course in a new domain, brought to life by rich discussion and an incredible slate of practitioners who live and breathe the content of TIGPC daily. Beyond the classroom, the course plunges students into getting “out of the building” to iterate quickly while translating learnings to the real world. Along the way the course acts as a strong call to public service.”
Team 2: Networks
Original Problem Statement: How might we implement a ubiquitous secure global access to the internet in order to help circumvent censorship in authoritarian regimes?
Final Problem Statement: How can we create an open, free Internet and maintain effective lines of communication in Taiwan in preparation for a potential invasion?
If you can’t see the presentation click here
By week 2 of the class students formed teams around a specific technology challenge facing a US government agency and worked throughout the course to develop their own proposals to help the U.S. compete more effectively through new operational concepts, organizations, and/or strategies.
Jason Kim: “This course doesn’t just discuss U.S. national security issues. It teaches students how to apply an influential and proven methodology to rapidly develop solutions to our most challenging problems.”
Team 3: Acquisition
Original Problem Statement: How can the U.S. Department of Defense match or beat the speed of great power competitors in acquiring and integrating critical technologies?
Final Problem Statement: How can the U.S. Department of Defense deploy alternative funding mechanisms in parallel to traditional procurement vehicles to enable and incentivize the delivery of critical next-generation technology in under 5 years?
If you can’t see the presentation click here
We wanted to give our students hands-on experience on how to deeply understand a problem at the intersection of our country’s diplomacy, information, its military capabilities, economic strength, finance, intelligence, and law enforcement and dual-use technology. First by having them develop hypotheses about the problem; next by getting out of the classroom and talking to relevant stakeholders across government, industry, and academia to validate their assumptions; and finally by taking what they learned to propose and prototype solutions to these problems.
Matt Kaplan: “The TIGPC class was a highlight of my academic experience at Stanford. Over the ten week quarter, I learned a tremendous amount about the importance of technology in global politics from the three professors and from the experts in government, business, and academia who came to speak. The class epitomizes some of the best parts of my time here: the opportunity to learn from incredible, caring faculty and to work with inspiring classmates. Joe, Steve, Raj instilled in my classmates and me a fresh sense of excitement to work in public service.”
Team 4: Wargames
Original Problem Statement: The U.S. needs a way, given a representative simulation, to rapidly explore a strategy for possible novel uses of existing platforms and weapons.
Final Problem Statement: Strategic wargames stand to benefit from a stronger integration of AI+ML but are struggling to find adoption and usage. How can this be addressed?
If you can’t see the presentation click here
We want our students to build the reflexes and skills to deeply understand a problem by gathering first-hand information and validating that the problem they are solving is the real problem, not a symptom of something else. Then, students began rapidly building minimal viable solutions (policy, software, hardware …) as a way to test and validate their understanding of both the problem and what it would take to solve it.
Etienne Reche-Ley: “Technology, Innovation and Great Power Competition gave me an opportunity to dive into a real world national security threat to the United States and understand the implications of it within the great power competition. Unlike any other class I have taken at Stanford, this class allowed me to take action on our problem about networks, censorship and the lack of free flow of information in authoritarian regimes, and gave me the chance to meet and learn from a multitude of experts on the topic. I finished this class with a deep understanding of our problem, a proposed actionable solution and a newfound interest in the intersection of technology and innovation as it applies to national defense. I am very grateful to have been part of this course, and it has inspired me to go a step further and pursue a career related to national security.”
Team 6: Disinformation
Original Problem Statement: Disinformation is a national security threat.
Final Problem Statement: The U.S.’s ability to close the disinformation response kill chain is hampered by a lack of coordination between U.S. government agencies, no clear ownership of the disinformation problem, and a lack of clear guidelines on public-private partnerships.
If you can’t see the presentation click here
One other goal of the class was to continue to validate and refine our pedagogy of combining a traditional lecture class with an experiential project. We did this by tasking the students to 1) use what they learned from the lectures and 2) then test their assumptions outside the classroom, the external input they received would be a force multiplier. It would make the lecture material real, tangible and actionable. And we and they would end up with something quite valuable.
Shreyas Lakhtakia: “TIGPC is an interdisciplinary class like no other. It is a fabulous introduction to some of the most significant tech and geopolitical challenges and questions of the 21st century. The class, like the topics it covers, is incredible and ambitious – it’s a great way to level up your understanding of not just international policy, political theory and technology policy but also deep tech and the role of startups in projecting national power. If you’re curious about the future of the world and the role of the US in it, you won’t find a more unique course, a more dedicated teaching team or better speakers to hear from than this!”
Team 7: Quantum Technology
Original Problem Statement: China’s planned government investment in quantum dwarfs that of the U.S. by a factor of 10.
Final Problem Statement: The US quantum ecosystem does not generate enough awareness of opportunities to pursue careers in quantum that could catalyze industry growth.
If you can’t see the presentation click here
We knew we were asking a lot from our students. We were integrating a lecture class with a heavy reading list with the best practices of hypothesis testing from Lean Launchpad/Hacking for Defense/I-Corps. But I’ve yet to bet wrong in pushing students past what they think is reasonable. Most rise way above the occasion.
Team 9: Lithium-Ion Batteries
Original Problem Statement: Supply and production of lithium-ion batteries is centered in China. How can the U.S. become competitive?
Final Problem Statement: China controls the processing of critical materials used for lithium-ion batteries. To regain control the DOE needs to incentivize short and long-term strategies to increase processing of critical materials and decrease dependence on lithium-ion batteries.
If you can’t see the presentation click here
All of our students put in extraordinary amount of work. Our students came from a diverse set of background and interests – from undergraduate sophomores to 5th year PhD’s – in a mix including international policy, economics, computer science, business, law and engineering. Some will go on to senior roles in State, Defense, policy or other agencies. Others will join or found the companies building new disruptive technologies. They’ll be the ones to determine what the world-order will look like for the rest of the century and beyond. Will it be a rules-based order where states cooperate to pursue a shared vision for a free and open region and where the sovereignty of all countries large and small is protected under international law? Or will it be an autocratic and dystopian future coerced and imposed by a neo-totalitarian regime?
This class changed the trajectory of many of our students. A number expressed newfound interest in exploring career options in the field of national security. Several will be taking advantage of opportunities provided by the Gordian Knot Center for National Security Innovation to further pursue their contribution to national security.
This course and our work at Stanford’s Gordian Knot Center would not be possible without the unrelenting support and guidance from Ambassador Mike McFaul and Professor Riitta Katila, GKC founding faculty and Principal Investigators, and the tenacity of David Hoyt, Gordian Knot Center Assistant Director.
Lessons Learned
- We combined lecture and experiential learning so our students can act on problems not just admire them
- The external input the students received was a force multiplier
- It made the lecture material real, tangible and actionable
- Pushing students past what they think is reasonable results in extraordinary output. Most rise way above the occasion
- The class creates opportunities for our best and brightest to engage and address challenges at the nexus of technology, innovation and national security
- The final presentations and papers from the class are proof that will happen
Filed under: Technology Innovation and Great Power Competition |
[ad_2]
Source link