[ad_1]
Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 1–22 (2020). This article proposes a definition of the microbiome by distinguishing the terms microbiome and microbiota, and provides a discussion on the heterogeneity and dynamics of microbiomes in time and space.
Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant. Sci. 17, 478–486 (2012).
Carthey, A. J. R., Gillings, M. R. & Blumstein, D. T. The extended genotype: microbially mediated olfactory communication. Trends Ecol. Evol. 33, 885–894 (2018).
Singh, B. K., Liu, H. & Trivedi, P. Eco-holobiont: a new concept to identify drivers of host-associated microorganisms. Environ. Microbiol. 22, 564–567 (2020).
Adair, K. L., Wilson, M., Bost, A. & Douglas, A. E. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME J. 12, 959–972 (2018).
Trinh, P., Zaneveld, J. R., Safranek, S. & Rabinowitz, P. M. One health relationships between human, animal, and environmental microbiomes: a mini-review. Front. Public Health 6, 1–9 (2018).
Mackenzie, J., McKinnon, M. & Jeggo, M. in Confronting Emerging Zoonoses: The One Health Paradigm (eds Yamada, A. et al.) 1–254 (2014).
Destoumieux-Garzón, D. et al. The one health concept: 10 years old and a long road ahead. Front. Vet. Sci. 5, 1–13 (2018).
Rüegg, S. R. et al. A systems approach to evaluate one health initiatives. Front. Vet. Sci. 5, 1–18 (2018).
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018). This article provides an assessment of the overall biomass composition of the biosphere and shows that terrestrial biomass is about two orders of magnitude higher than marine biomass.
van der Heijden, M. G. A., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008). This article summarizes various roles of soil microorganisms in terrestrial ecosystems and highlights that soil microorganisms must be considered as important drivers of plant diversity and productivity.
Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014). This review emphasizes the diversity of microorganisms and animals that live in soils and how microorganisms contribute to ecosystem functioning.
Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017). This review highlights the complexity of soil microorganisms and the roles they play in various biogeochemical cycles.
Dias, P. C. Sources and sinks in population biology. Trends Ecol. Evol. 11, 326–330 (1996).
Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl Acad. Sci. USA 112, E911–E920 (2015). This article provides detailed evidence on the assembly and recruitment of the root-associated microbiomes.
Walsh, C. M., Becker-Uncapher, I., Carlson, M. & Fierer, N. Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes. ISME J. 15, 2748–2762 (2021).
Rochefort, A. et al. Transmission of seed and soil microbiota to seedling. mSystems 6, e0044621 (2021).
Bergna, A. et al. Tomato seeds preferably transmit plant beneficial endophytes. Phytobiomes J. 2, 183–193 (2018).
Abdelfattah, A., Wisniewski, M., Schena, L. & Tack, A. J. M. Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environ. Microbiol. 23, 2199–2214 (2021).
Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013). This review highlights the composition of plant-associated microbiota and summarizes the factors that drive their structure and functions.
Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1717617115 (2018).
Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011). This article performs a metagenomic analysis of samples from four countries and reveals the factors that drive the enterotypes of the human gut microbiome.
Amat, S., Holman, D. B., Timsit, E., Schwinghamer, T. & Alexander, T. W. Evaluation of the nasopharyngeal microbiota in beef cattle transported to a feedlot, with a focus on lactic acid-producing bacteria. Front. Microbiol. 10, 1988 (2019).
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020). This review summarizes the genetic, biochemical and metabolic interactions between the host plant and its associated microbiomes.
Mahaney, W. C. & Krishnamani, R. Understanding geophagy in animals: standard procedures for sampling soils. J. Chem. Ecol. 29, 1503–1523 (2003).
Liddicoat, C. et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ. 701, 134684 (2020).
Ottman, N. et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J. Allergy Clin. Immunol. 143, 1198–1206.e12 (2019).
Attwood, G. T. et al. Applications of the soil, plant and rumen microbiomes in pastoral agriculture. Front. Nutr. 6, 1–17 (2019).
Mcgrath, D., Poole, D. B. R., Fleming, G. A. & Sinnott, J. Soil ingestion by grazing sheep. Ir. J. Agric. Res. 21, 135–145 (1982).
Healy, W. B. Ingestion of soil by dairy cows. N. Z. J. Agric. Res. 11, 487–499 (2012).
Ross, A. A., Müller, K. M., Weese, J. S. & Neufeld, J. D. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc. Natl Acad. Sci. USA 115, E5786–E5795 (2018).
Bindari, Y. R., Moore, R. J., Van, T. T. H., Brown, S. W. W. & Gerber, P. F. Microbial taxa in dust and excreta associated with the productive performance of commercial meat chicken flocks. Anim. Microbiome https://doi.org/10.1186/s42523-021-00127-y (2021).
Sun, H., Peng, K., Xue, M. & Liu, J. Metagenomics analysis revealed the distinctive ruminal microbiome and resistive profiles in dairy buffaloes. Anim. Microbiome 3, 1–13 (2021).
Sing, D. & Sing, C. F. Impact of direct soil exposures from airborne dust and geophagy on human health. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph7031205 (2010).
Nyanza, E. C., Joseph, M., Premji, S. S., Thomas, D. S. K. & Mannion, C. Geophagy practices and the content of chemical elements in the soil eaten by pregnant women in artisanal and small scale gold mining communities in Tanzania. BMC Pregnancy Childbirth 14, 1–10 (2014).
Pearson, A. L. et al. Associations detected between measures of neighborhood environmental conditions and human microbiome diversity. Sci. Total Environ. 745, 141029 (2020).
Liddicoat, C. et al. Ambient soil cation exchange capacity inversely associates with infectious and parasitic disease risk in regional Australia. Sci. Total Environ. 626, 117–125 (2018).
Stanaway, I. B. et al. Human oral buccal microbiomes are associated with farmworker status and azinphos-methyl agricultural pesticide exposure. Appl. Environ. Microbiol. 83, e02149-16 (2017).
Shukla, S. K. et al. The nasal microbiota of dairy farmers is more complex than oral microbiota, reflects occupational exposure, and provides competition for staphylococci. PLoS ONE 12, 1–18 (2017).
Doran, J. W. & Zeiss, M. R. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15, 3–11 (2000).
McBratney, A. B., Field, D. J. & Koch, A. The dimensions of soil security. Geoderma 213, 203–213 (2014).
Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).
Bünemann, E. K. et al. Soil quality — a critical review. Soil Biol. Biochem. 120, 105–125 (2018). This review provides a critical appraisal of soil quality and summarizes a wide variety of indicators.
Fierer, N., Wood, S. A. & Bueno de Mesquita, C. P. How microbes can, and cannot, be used to assess soil health. Soil Biol. Biochem. 153, 108111 (2021).
Garland, G. et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2, 28–37 (2021).
Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).
Edlinger, A., Garland, G. & Banerjee, S. Agricultural management and pesticide use reduce the functioning of benecial plant symbionts. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01799-8 (2022). This study demonstrates that pesticides reduce the natural nutrient uptake capacity of one of the oldest and most widespread symbionts of plants.
Sallach, J. B., Thirkell, T. J., Field, K. J. & Carter, L. J. The emerging threat of human-use antifungals in sustainable and circular agriculture schemes. Plants People Planet 3, 685–693 (2021).
Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).
Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011). This review highlights that the stability of SOM is determined by microhabitat properties.
Liang, C. & Balser, T. C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol. 9, 75 (2011).
Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 1–11 (2012). This review discusses the role of microorganisms in soil carbon cycling and highlights the ecology of microorganisms in terms of broad and narrow processes in soil.
Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 1–10 (2016). This study provides evidence that soil microbial biomass can be a chemically diverse yet stable pool of soil carbon.
Banerjee, S. et al. Microbial interkingdom associations across soil depths reveal network connectivity and keystone taxa linked to soil fine-fraction carbon content. Agric. Ecosyst. Environ. 320, 107559 (2021).
Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).
Alori, E. T., Glick, B. R. & Babalola, O. O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 8, 1–8 (2017).
Saha, M. et al. Microbial siderophores and their potential applications: a review. Environ. Sci. Pollut. Res. 23, 3984–3999 (2015).
Brevik, E. et al. Soil and human health: current status and future needs. Air Soil Water Res. 13, 1–23 (2020).
Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009). This review discusses the rhizosphere as a habitat and summarizes various beneficial roles of the rhizosphere microbiota.
van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).
Richardson, A. E., Barea, J. M., McNeill, A. M. & Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321, 305–339 (2009).
Berg, G., Grube, M., Schloter, M. & Smalla, K. The plant microbiome and its importance for plant and human health. Front. Microbiol. 5, 1–2 (2014).
Parniske, M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6, 763–75 (2008).
Smith, S. & Read, D. Mycorrhizal Symbiosis (Elsevier, 2008).
Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407 (2010).
Lekberg, Y. & Koide, R. T. Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. N. Phytol. 168, 189–204 (2005).
Salomon, M. J. et al. Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl. Soil Ecol. 169, 104225 (2022).
Gill, S. S. et al. Piriformospora indica: potential and significance in plant stress tolerance. Front. Microbiol. 7, 332 (2016).
Geisen, S. et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev. 42, 293–323 (2018).
Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).
Backer, R. et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 871, 1–17 (2018).
Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Van Der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013). This review highlights the importance of understanding the rhizosphere and its microbiota for sustainable agriculture and climate change mitigation.
Schlaeppi, K. & Bulgarelli, D. The plant microbiome at work. Mol. Plant Microbe Interact. 28, 212–217 (2015).
Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).
Fitzpatrick, C. R. et al. The plant microbiome: from ecology to reductionism and beyond. Annu. Rev. Microbiol. 74, 81–100 (2020).
Deshani Igalavithana, A. et al. Assessment of soil health in urban agriculture: soil enzymes and microbial properties. Sustainability 9, 310 (2017).
van der Heijden, M. G. A., Bruin, S., De, Luckerhoff, L., van Logtestijn, R. S. & Schlaeppi, K. A widespread plant–fungal–bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J. 10, 1–11 (2016).
Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).
Van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl Acad. Sci. USA 109, 1159–1164 (2012). This study shows an inverse relationship between soil microbial diversity and survival of the invading species E. coli O157:H7. The study reveals a lack of competitive ability of invading pathogen in species-rich environments.
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E. & van der Heijden, M. G. A. Fungal–bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 1–10 (2019).
Fitzpatrick, C. R., Mustafa, Z. & Viliunas, J. Soil microbes alter plant fitness under competition and drought. J. Evol. Biol. 32, 438–450 (2019).
Expósito, R. G., de Bruijn, I., Postma, J. & Raaijmakers, J. M. Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front. Microbiol. 8, 1–12 (2017).
Schlatter, D., Kinkel, L., Thomashow, L., Weller, D. & Paulitz, T. Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107, 1284–1297 (2017).
McSpadden Gardener, B. B. & Weller, D. M. Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Appl. Environ. Microbiol. 67, 4414–4425 (2001).
Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).
Kikuchi, Y., Hosokawa, T. & Fukatsu, T. An ancient but promiscuous host–symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 5, 446–460 (2010).
Hannula, S. E., Zhu, F., Heinen, R. & Bezemer, T. M. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1–9 (2019). This study shows soil as the reservoir of microorganisms for leaf-feeding caterpillars and reveals the connection between the soil and insect microbiomes.
Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl Acad. Sci. USA 109, 8618–8622 (2012).
Bruijning, M., Henry, L. P., Forsberg, S. K. G., Metcalf, C. J. E. & Ayroles, J. F. Natural selection for imprecise vertical transmission in host–microbiota systems. Nat. Ecol. Evol. 6, 77–87 (2021).
Wilschut, R. A. & Geisen, S. Nematodes as drivers of plant performance in natural systems. Trends Plant Sci. 26, 237–247 (2021).
Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. mBio 9, e01294-18 (2018).
Peixoto, R. S., Harkins, D. M. & Nelson, K. E. Advances in microbiome research for animal health. Annu. Rev. Anim. Biosci. 9, 289–311 (2021).
UIA. Soil-borne diseases in animals. The Encyclopedia of World Problems http://encyclopedia.uia.org/en/problem/141320 (2021).
Lerner, P. Nocardiosis. Clin. Infect. Dis. 22, 891–905 (1996).
Costa, J. L. N. et al. Outbreak of malignant oedema in sheep caused by Clostridium sordellii, predisposed by routine vaccination. Vet. Rec. 160, 594–595 (2007).
Young, S. L., Sherman, P. W., Lucks, J. B. & Pelto, G. H. Why on earth?: evaluating hypotheses about the physiological functions of human geophagy. Q. Rev. Biol. 86, 97–120 (2011).
Blum, W. E. H., Zechmeister-Boltenstern, S. & Keiblinger, K. M. Does soil contribute to the human gut microbiome? Microorganisms 7, 287 (2019).
Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl Acad. Sci. USA 109, 8334–8339 (2012). This study reveals the connection between allergy in humans and microbial diversity in environments.
Wills-Karp, M., Santeliz, J. & Karp, C. L. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat. Rev. Immunol. 1, 69–75 (2001).
Yazdanbakhsh, M., Kremsner, P. G. & Van Ree, R. Parasites and the hygiene hypothesis. Sci 296, 490–494 (2002).
Hopping, K. A., Chignell, S. M. & Lambin, E. F. The demise of caterpillar fungus in the Himalayan region due to climate change and overharvesting. Proc. Natl Acad. Sci. USA 115, 11489–11494 (2018).
Hirt, H. Healthy soils for healthy plants for healthy humans. EMBO Rep. 21, 1–5 (2020).
Brevik, E. C. & Burgess, L. C. The 2012 fungal meningitis outbreak in the United States: connections between soils and human health. Soil Horiz. 54, 1–4 (2013).
Steffan, J. J., Brevik, E. C., Burgess, L. C. & Cerdà, A. The effect of soil on human health: an overview. Eur. J. Soil Sci. 69, 159–171 (2018).
Loukas, A. et al. Hookworm infection. Nat. Rev. Dis. Primers 2, 1–18 (2016).
Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M. & Swerdlow, D. L. Epidemiology of O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 11, 603–609 (2005).
Franz, E. et al. Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils. Environ. Microbiol. 10, 313–327 (2008).
Berg, G., Eberl, L. & Hartmann, A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 7, 1673–1685 (2005).
Guzman-Otazo, J. I. et al. Diarrheal bacterial pathogens and multi-resistant enterobacteria in the Choqueyapu River in La Paz, Bolivia. PLoS ONE https://doi.org/10.1371/journal.pone.0210735 (2019).
Barnes, G., Saunders, D. G. O. & Williamson, T. Banishing barberry: the history of Berberis vulgaris prevalence and wheat stem rust incidence across Britain. Plant Pathol. 69, 1193–1202 (2020).
Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).
Chu, H. et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12, 2998–3006 (2010).
Wei, Y. et al. Does pH matter for ecosystem multifunctionality? An empirical test in a semi-arid grassland on the Loess Plateau. Funct. Ecol. https://doi.org/10.1111/1365-2435.14057 (2022).
Svenningsen, N. B. et al. Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J. 12, 1296–1307 (2018).
Sul, W. J. et al. Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biol. Biochem. 65, 33–38 (2013).
Geyer, K. M., Kyker-Snowman, E., Grandy, A. S. & Frey, S. D. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127, 173–188 (2016).
Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).
Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019). This article is a consensus statement of scientists across the world and highlights how microorganisms affect climate change but are also affected by anthropogenic activities.
Querejeta, J. I. et al. Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition. N. Phytol. 232, 1399–1413 (2021).
Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010). This review discusses microbial controls of terretrial greenhouse gas emissions and highlights the importance of soil microorganisms for climate change mitigation.
Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Chang. 10, 550–554 (2020). This study shows how elevated temperatures can increase the abundance of soil-borne plant pathogens, highlighting that climate change can lead to further prevalence of plant diseases.
Romero, F. et al. Humidity and high temperature are important for predicting fungal disease outbreaks worldwide. N. Phytol. https://doi.org/10.1111/NPH.17340 (2021).
Trivedi, P., Mattupalli, C., Eversole, K. & Leach, J. E. Enabling sustainable agriculture through understanding and enhancement of microbiomes. N. Phytol. 230, 2129–2147 (2021).
Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 1–10 (2020).
Jousset, A. et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 11, 853–862 (2017).
Chen, Q. L. et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141, 107686 (2020).
Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).
Larsson, D. G. J. & Flach, C. F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20, 257–269 (2021).
Kahn, L. H. Antimicrobial resistance: a one health perspective. Trans. R. Soc. Trop. Med. Hyg. 111, 255–260 (2017).
Hofer, U. The cost of antimicrobial resistance. Nat. Rev. Microbiol. 17, 3 (2018).
McEwen, S. & Collignon, P. Antimicrobial resistance: a one health perspective. Microbiol. Spectr. 6, 1–26 (2018).
Zhang, Y. J. et al. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ. Int. 130, 104912 (2019).
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature https://doi.org/10.1038/s41586-018-0386-6 (2018). This study provides a global estimate of the structure and function of soil bacteria and fungi.
Matson, P. A. A., Parton, W. J. J., Power, A. G. G. & Swift, M. J. J. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997).
Babin, D., Leoni, C., Neal, A. L., Sessitsch, A. & Smalla, K. Editorial to the thematic topic “towards a more sustainable agriculture through managing soil microbiomes”. FEMS Microbiol. Ecol. 97, fiab094 (2021).
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002). This excellent review shows how the use of chemical fertilizers and pesticides increased with agricultural production over seven decades.
Oehl, F. et al. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl. Environ. Microbiol. 69, 2816–2824 (2003).
Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 21, 973–985 (2015).
Verbruggen, E. et al. Positive effects of organic farming on below-ground mutualists: of mycorrhizal fungal comparison in agricultural communities soils. N. Phytol. 186, 968–979 (2010).
Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).
Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 1–8 (2015).
Wittwer, R. A. et al. Organic and conservation agriculture promote ecosystem multifunctionality. Sci. Adv. 7, eabg6995 (2021).
Fenner, K., Canonica, S., Wackett, L. P. & Elsner, M. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341, 752–758 (2013).
Silva, V. et al. Pesticide residues in European agricultural soils — a hidden reality unfolded. Sci. Total Environ. 653, 1532–1545 (2019).
Riedo, J. et al. Widespread occurrence of pesticides in organically managed agricultural soils — the ghost of a conventional agricultural past? Environ. Sci. Technol. 55, 2919–2928 (2021).
Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).
Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006). This article shows the link between gut microbiota and obesity in humans.
Breidenbach, A. et al. Microbial functional changes mark irreversible course of Tibetan grassland degradation. Nat. Commun. 13, 1–10 (2022).
Hu, W. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 1–15 (2021).
Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).
Van Boeckel, T. P. et al. Global trends in antimicrobial use in food animals. Proc. Natl Acad. Sci. USA 112, 5649–5654 (2015).
Starr, E. P. et al. Stable-isotope-informed, genome-resolved metagenomics uncovers potential cross-kingdom interactions in rhizosphere soil. mSphere 6, e00085-21 (2021).
Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076-18 (2018).
Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).
Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).
Tang, T. et al. Antibiotics increased host insecticide susceptibility via collapsed bacterial symbionts reducing detoxification metabolism in the brown planthopper, Nilaparvata lugens. J. Pest. Sci. 94, 757–767 (2021).
Ryan, M. J. et al. Development of microbiome biobanks — challenges and opportunities. Trends Microbiol. 29, 89–92 (2021).
FAO, ITPS, GSBI, SCBD & EC. State of Knowledge of Soil Biodiversity – Status, challenges and potentialities (FAO, 2020).
Jones, C. M. et al. Recently identified microbial guild mediates soil N2O sink capacity. Nat. Clim. Chang. 4, 801–805 (2014).
Naylor, D. et al. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 45, 29–59 (2020).
Banerjee, S. & Siciliano, S. D. Spatially tripartite interactions of denitrifiers in arctic ecosystems: activities, functional groups and soil resources. Environ. Microbiol. 14, 2601–2613 (2012).
Six, J., Elliott, E. T., Paustian, K. & Doran, J. W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62, 1367–1377 (1998).
Anthony, M. A., Crowther, T. W., Maynard, D. S., van den Hoogen, J. & Averill, C. Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth 2, 349–360 (2020).
Wei, Z. et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 1–9 (2015).
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. Trichoderma species — opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2, 43–56 (2004).
Saleem, M., Arshad, M., Hussain, S. & Bhatti, A. S. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34, 635–648 (2007).
Morris, W. E., Uzal, F. A., Fattorini, F. R. & Terzolo, H. Malignant oedema associated with blood-sampling in sheep. Aust. Vet. J. 80, 280–281 (2002).
Zhu, T. et al. Bacterivore nematodes stimulate soil gross N transformation rates depending on their species. Biol. Fertil. Soils 54, 107–118 (2018).
Edwards, A. A., Mathura, C. B. & Edwards, C. H. Effects of maternal geophagia on infant and juvenile rats. J. Natl Med. Assoc. 75, 895–902 (1983).
Gibbs, E. P. J. The evolution of One Health: a decade of progress and challenges for the future. Vet. Rec. 174, 85–91 (2014).
Dukes, T. W. That other branch of medicine: an historiography of veterinary medicine from a Canadian perspective. Can. Bull. Med. Hist. 17, 229–243 (2000).
World Health Organization. Constitution. WHO https://www.who.int/about/governance/constitution (2021).
Zegeye, E. K. et al. Selection, succession, and stabilization of soil microbial consortia. mSystems 4, e00055-19 (2019).
Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018). This commentary article highlights how keystone taxa can determine microbiome complexity and functioning. It also discusses the factors that determine their activities.
Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90, 2352–2359 (2009).
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
Clemmensen, K. E. et al. A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecol. Lett. 24, 1193–1204 (2021). This study shows that the role of mycorrhizal fungi in tundra soil carbon stocks is linked to a tipping point.
Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018). This review provides an assessment of the human microbiome and challenges in our understanding.
[ad_2]
Source link