Soil microbiomes and one health

[ad_1]

  • Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 1–22 (2020). This article proposes a definition of the microbiome by distinguishing the terms microbiome and microbiota, and provides a discussion on the heterogeneity and dynamics of microbiomes in time and space.

    Article 

    Google Scholar
     

  • Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant. Sci. 17, 478–486 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carthey, A. J. R., Gillings, M. R. & Blumstein, D. T. The extended genotype: microbially mediated olfactory communication. Trends Ecol. Evol. 33, 885–894 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Singh, B. K., Liu, H. & Trivedi, P. Eco-holobiont: a new concept to identify drivers of host-associated microorganisms. Environ. Microbiol. 22, 564–567 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Adair, K. L., Wilson, M., Bost, A. & Douglas, A. E. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME J. 12, 959–972 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Trinh, P., Zaneveld, J. R., Safranek, S. & Rabinowitz, P. M. One health relationships between human, animal, and environmental microbiomes: a mini-review. Front. Public Health 6, 1–9 (2018).

    Article 

    Google Scholar
     

  • Mackenzie, J., McKinnon, M. & Jeggo, M. in Confronting Emerging Zoonoses: The One Health Paradigm (eds Yamada, A. et al.) 1–254 (2014).

  • Destoumieux-Garzón, D. et al. The one health concept: 10 years old and a long road ahead. Front. Vet. Sci. 5, 1–13 (2018).

    Article 

    Google Scholar
     

  • Rüegg, S. R. et al. A systems approach to evaluate one health initiatives. Front. Vet. Sci. 5, 1–18 (2018).

    Article 

    Google Scholar
     

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018). This article provides an assessment of the overall biomass composition of the biosphere and shows that terrestrial biomass is about two orders of magnitude higher than marine biomass.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van der Heijden, M. G. A., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008). This article summarizes various roles of soil microorganisms in terrestrial ecosystems and highlights that soil microorganisms must be considered as important drivers of plant diversity and productivity.

    PubMed 
    Article 

    Google Scholar
     

  • Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014). This review emphasizes the diversity of microorganisms and animals that live in soils and how microorganisms contribute to ecosystem functioning.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017). This review highlights the complexity of soil microorganisms and the roles they play in various biogeochemical cycles.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dias, P. C. Sources and sinks in population biology. Trends Ecol. Evol. 11, 326–330 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl Acad. Sci. USA 112, E911–E920 (2015). This article provides detailed evidence on the assembly and recruitment of the root-associated microbiomes.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Walsh, C. M., Becker-Uncapher, I., Carlson, M. & Fierer, N. Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes. ISME J. 15, 2748–2762 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rochefort, A. et al. Transmission of seed and soil microbiota to seedling. mSystems 6, e0044621 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Bergna, A. et al. Tomato seeds preferably transmit plant beneficial endophytes. Phytobiomes J. 2, 183–193 (2018).

    Article 

    Google Scholar
     

  • Abdelfattah, A., Wisniewski, M., Schena, L. & Tack, A. J. M. Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environ. Microbiol. 23, 2199–2214 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013). This review highlights the composition of plant-associated microbiota and summarizes the factors that drive their structure and functions.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1717617115 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011). This article performs a metagenomic analysis of samples from four countries and reveals the factors that drive the enterotypes of the human gut microbiome.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Amat, S., Holman, D. B., Timsit, E., Schwinghamer, T. & Alexander, T. W. Evaluation of the nasopharyngeal microbiota in beef cattle transported to a feedlot, with a focus on lactic acid-producing bacteria. Front. Microbiol. 10, 1988 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020). This review summarizes the genetic, biochemical and metabolic interactions between the host plant and its associated microbiomes.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mahaney, W. C. & Krishnamani, R. Understanding geophagy in animals: standard procedures for sampling soils. J. Chem. Ecol. 29, 1503–1523 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liddicoat, C. et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ. 701, 134684 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ottman, N. et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J. Allergy Clin. Immunol. 143, 1198–1206.e12 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Attwood, G. T. et al. Applications of the soil, plant and rumen microbiomes in pastoral agriculture. Front. Nutr. 6, 1–17 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mcgrath, D., Poole, D. B. R., Fleming, G. A. & Sinnott, J. Soil ingestion by grazing sheep. Ir. J. Agric. Res. 21, 135–145 (1982).


    Google Scholar
     

  • Healy, W. B. Ingestion of soil by dairy cows. N. Z. J. Agric. Res. 11, 487–499 (2012).

    Article 

    Google Scholar
     

  • Ross, A. A., Müller, K. M., Weese, J. S. & Neufeld, J. D. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc. Natl Acad. Sci. USA 115, E5786–E5795 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bindari, Y. R., Moore, R. J., Van, T. T. H., Brown, S. W. W. & Gerber, P. F. Microbial taxa in dust and excreta associated with the productive performance of commercial meat chicken flocks. Anim. Microbiome https://doi.org/10.1186/s42523-021-00127-y (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, H., Peng, K., Xue, M. & Liu, J. Metagenomics analysis revealed the distinctive ruminal microbiome and resistive profiles in dairy buffaloes. Anim. Microbiome 3, 1–13 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sing, D. & Sing, C. F. Impact of direct soil exposures from airborne dust and geophagy on human health. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph7031205 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyanza, E. C., Joseph, M., Premji, S. S., Thomas, D. S. K. & Mannion, C. Geophagy practices and the content of chemical elements in the soil eaten by pregnant women in artisanal and small scale gold mining communities in Tanzania. BMC Pregnancy Childbirth 14, 1–10 (2014).

    Article 

    Google Scholar
     

  • Pearson, A. L. et al. Associations detected between measures of neighborhood environmental conditions and human microbiome diversity. Sci. Total Environ. 745, 141029 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liddicoat, C. et al. Ambient soil cation exchange capacity inversely associates with infectious and parasitic disease risk in regional Australia. Sci. Total Environ. 626, 117–125 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stanaway, I. B. et al. Human oral buccal microbiomes are associated with farmworker status and azinphos-methyl agricultural pesticide exposure. Appl. Environ. Microbiol. 83, e02149-16 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Shukla, S. K. et al. The nasal microbiota of dairy farmers is more complex than oral microbiota, reflects occupational exposure, and provides competition for staphylococci. PLoS ONE 12, 1–18 (2017).


    Google Scholar
     

  • Doran, J. W. & Zeiss, M. R. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15, 3–11 (2000).

    Article 

    Google Scholar
     

  • McBratney, A. B., Field, D. J. & Koch, A. The dimensions of soil security. Geoderma 213, 203–213 (2014).

    Article 

    Google Scholar
     

  • Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bünemann, E. K. et al. Soil quality — a critical review. Soil Biol. Biochem. 120, 105–125 (2018). This review provides a critical appraisal of soil quality and summarizes a wide variety of indicators.

    Article 
    CAS 

    Google Scholar
     

  • Fierer, N., Wood, S. A. & Bueno de Mesquita, C. P. How microbes can, and cannot, be used to assess soil health. Soil Biol. Biochem. 153, 108111 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Garland, G. et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2, 28–37 (2021).

    Article 

    Google Scholar
     

  • Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Edlinger, A., Garland, G. & Banerjee, S. Agricultural management and pesticide use reduce the functioning of benecial plant symbionts. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01799-8 (2022). This study demonstrates that pesticides reduce the natural nutrient uptake capacity of one of the oldest and most widespread symbionts of plants.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sallach, J. B., Thirkell, T. J., Field, K. J. & Carter, L. J. The emerging threat of human-use antifungals in sustainable and circular agriculture schemes. Plants People Planet 3, 685–693 (2021).

    Article 

    Google Scholar
     

  • Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011). This review highlights that the stability of SOM is determined by microhabitat properties.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liang, C. & Balser, T. C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol. 9, 75 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 1–11 (2012). This review discusses the role of microorganisms in soil carbon cycling and highlights the ecology of microorganisms in terms of broad and narrow processes in soil.

    Article 
    CAS 

    Google Scholar
     

  • Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 1–10 (2016). This study provides evidence that soil microbial biomass can be a chemically diverse yet stable pool of soil carbon.

    Article 
    CAS 

    Google Scholar
     

  • Banerjee, S. et al. Microbial interkingdom associations across soil depths reveal network connectivity and keystone taxa linked to soil fine-fraction carbon content. Agric. Ecosyst. Environ. 320, 107559 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Alori, E. T., Glick, B. R. & Babalola, O. O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 8, 1–8 (2017).

    Article 

    Google Scholar
     

  • Saha, M. et al. Microbial siderophores and their potential applications: a review. Environ. Sci. Pollut. Res. 23, 3984–3999 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Brevik, E. et al. Soil and human health: current status and future needs. Air Soil Water Res. 13, 1–23 (2020).

    Article 

    Google Scholar
     

  • Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009). This review discusses the rhizosphere as a habitat and summarizes various beneficial roles of the rhizosphere microbiota.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Richardson, A. E., Barea, J. M., McNeill, A. M. & Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321, 305–339 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Berg, G., Grube, M., Schloter, M. & Smalla, K. The plant microbiome and its importance for plant and human health. Front. Microbiol. 5, 1–2 (2014).


    Google Scholar
     

  • Parniske, M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6, 763–75 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smith, S. & Read, D. Mycorrhizal Symbiosis (Elsevier, 2008).

  • Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Lekberg, Y. & Koide, R. T. Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. N. Phytol. 168, 189–204 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Salomon, M. J. et al. Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl. Soil Ecol. 169, 104225 (2022).

    Article 

    Google Scholar
     

  • Gill, S. S. et al. Piriformospora indica: potential and significance in plant stress tolerance. Front. Microbiol. 7, 332 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Geisen, S. et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol. Rev. 42, 293–323 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Backer, R. et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 871, 1–17 (2018).


    Google Scholar
     

  • Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Van Der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013). This review highlights the importance of understanding the rhizosphere and its microbiota for sustainable agriculture and climate change mitigation.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schlaeppi, K. & Bulgarelli, D. The plant microbiome at work. Mol. Plant Microbe Interact. 28, 212–217 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fitzpatrick, C. R. et al. The plant microbiome: from ecology to reductionism and beyond. Annu. Rev. Microbiol. 74, 81–100 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Deshani Igalavithana, A. et al. Assessment of soil health in urban agriculture: soil enzymes and microbial properties. Sustainability 9, 310 (2017).

    Article 
    CAS 

    Google Scholar
     

  • van der Heijden, M. G. A., Bruin, S., De, Luckerhoff, L., van Logtestijn, R. S. & Schlaeppi, K. A widespread plant–fungal–bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J. 10, 1–11 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl Acad. Sci. USA 109, 1159–1164 (2012). This study shows an inverse relationship between soil microbial diversity and survival of the invading species E. coli O157:H7. The study reveals a lack of competitive ability of invading pathogen in species-rich environments.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E. & van der Heijden, M. G. A. Fungal–bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 1–10 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Fitzpatrick, C. R., Mustafa, Z. & Viliunas, J. Soil microbes alter plant fitness under competition and drought. J. Evol. Biol. 32, 438–450 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Expósito, R. G., de Bruijn, I., Postma, J. & Raaijmakers, J. M. Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front. Microbiol. 8, 1–12 (2017).


    Google Scholar
     

  • Schlatter, D., Kinkel, L., Thomashow, L., Weller, D. & Paulitz, T. Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107, 1284–1297 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • McSpadden Gardener, B. B. & Weller, D. M. Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Appl. Environ. Microbiol. 67, 4414–4425 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kikuchi, Y., Hosokawa, T. & Fukatsu, T. An ancient but promiscuous host–symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 5, 446–460 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hannula, S. E., Zhu, F., Heinen, R. & Bezemer, T. M. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1–9 (2019). This study shows soil as the reservoir of microorganisms for leaf-feeding caterpillars and reveals the connection between the soil and insect microbiomes.

    CAS 
    Article 

    Google Scholar
     

  • Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl Acad. Sci. USA 109, 8618–8622 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bruijning, M., Henry, L. P., Forsberg, S. K. G., Metcalf, C. J. E. & Ayroles, J. F. Natural selection for imprecise vertical transmission in host–microbiota systems. Nat. Ecol. Evol. 6, 77–87 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Wilschut, R. A. & Geisen, S. Nematodes as drivers of plant performance in natural systems. Trends Plant Sci. 26, 237–247 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. mBio 9, e01294-18 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peixoto, R. S., Harkins, D. M. & Nelson, K. E. Advances in microbiome research for animal health. Annu. Rev. Anim. Biosci. 9, 289–311 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • UIA. Soil-borne diseases in animals. The Encyclopedia of World Problems http://encyclopedia.uia.org/en/problem/141320 (2021).

  • Lerner, P. Nocardiosis. Clin. Infect. Dis. 22, 891–905 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Costa, J. L. N. et al. Outbreak of malignant oedema in sheep caused by Clostridium sordellii, predisposed by routine vaccination. Vet. Rec. 160, 594–595 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Young, S. L., Sherman, P. W., Lucks, J. B. & Pelto, G. H. Why on earth?: evaluating hypotheses about the physiological functions of human geophagy. Q. Rev. Biol. 86, 97–120 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Blum, W. E. H., Zechmeister-Boltenstern, S. & Keiblinger, K. M. Does soil contribute to the human gut microbiome? Microorganisms 7, 287 (2019).

    PubMed Central 
    Article 

    Google Scholar
     

  • Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl Acad. Sci. USA 109, 8334–8339 (2012). This study reveals the connection between allergy in humans and microbial diversity in environments.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wills-Karp, M., Santeliz, J. & Karp, C. L. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat. Rev. Immunol. 1, 69–75 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yazdanbakhsh, M., Kremsner, P. G. & Van Ree, R. Parasites and the hygiene hypothesis. Sci 296, 490–494 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Hopping, K. A., Chignell, S. M. & Lambin, E. F. The demise of caterpillar fungus in the Himalayan region due to climate change and overharvesting. Proc. Natl Acad. Sci. USA 115, 11489–11494 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hirt, H. Healthy soils for healthy plants for healthy humans. EMBO Rep. 21, 1–5 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Brevik, E. C. & Burgess, L. C. The 2012 fungal meningitis outbreak in the United States: connections between soils and human health. Soil Horiz. 54, 1–4 (2013).


    Google Scholar
     

  • Steffan, J. J., Brevik, E. C., Burgess, L. C. & Cerdà, A. The effect of soil on human health: an overview. Eur. J. Soil Sci. 69, 159–171 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Loukas, A. et al. Hookworm infection. Nat. Rev. Dis. Primers 2, 1–18 (2016).

    Article 

    Google Scholar
     

  • Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M. & Swerdlow, D. L. Epidemiology of O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 11, 603–609 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Franz, E. et al. Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils. Environ. Microbiol. 10, 313–327 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Berg, G., Eberl, L. & Hartmann, A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 7, 1673–1685 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guzman-Otazo, J. I. et al. Diarrheal bacterial pathogens and multi-resistant enterobacteria in the Choqueyapu River in La Paz, Bolivia. PLoS ONE https://doi.org/10.1371/journal.pone.0210735 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnes, G., Saunders, D. G. O. & Williamson, T. Banishing barberry: the history of Berberis vulgaris prevalence and wheat stem rust incidence across Britain. Plant Pathol. 69, 1193–1202 (2020).

    Article 

    Google Scholar
     

  • Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chu, H. et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12, 2998–3006 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wei, Y. et al. Does pH matter for ecosystem multifunctionality? An empirical test in a semi-arid grassland on the Loess Plateau. Funct. Ecol. https://doi.org/10.1111/1365-2435.14057 (2022).

    Article 

    Google Scholar
     

  • Svenningsen, N. B. et al. Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J. 12, 1296–1307 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sul, W. J. et al. Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biol. Biochem. 65, 33–38 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Geyer, K. M., Kyker-Snowman, E., Grandy, A. S. & Frey, S. D. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127, 173–188 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019). This article is a consensus statement of scientists across the world and highlights how microorganisms affect climate change but are also affected by anthropogenic activities.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Querejeta, J. I. et al. Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition. N. Phytol. 232, 1399–1413 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010). This review discusses microbial controls of terretrial greenhouse gas emissions and highlights the importance of soil microorganisms for climate change mitigation.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Chang. 10, 550–554 (2020). This study shows how elevated temperatures can increase the abundance of soil-borne plant pathogens, highlighting that climate change can lead to further prevalence of plant diseases.

    Article 

    Google Scholar
     

  • Romero, F. et al. Humidity and high temperature are important for predicting fungal disease outbreaks worldwide. N. Phytol. https://doi.org/10.1111/NPH.17340 (2021).

    Article 

    Google Scholar
     

  • Trivedi, P., Mattupalli, C., Eversole, K. & Leach, J. E. Enabling sustainable agriculture through understanding and enhancement of microbiomes. N. Phytol. 230, 2129–2147 (2021).

    Article 

    Google Scholar
     

  • Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 1–10 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Jousset, A. et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 11, 853–862 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, Q. L. et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141, 107686 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Larsson, D. G. J. & Flach, C. F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20, 257–269 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kahn, L. H. Antimicrobial resistance: a one health perspective. Trans. R. Soc. Trop. Med. Hyg. 111, 255–260 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Hofer, U. The cost of antimicrobial resistance. Nat. Rev. Microbiol. 17, 3 (2018).

    Article 
    CAS 

    Google Scholar
     

  • McEwen, S. & Collignon, P. Antimicrobial resistance: a one health perspective. Microbiol. Spectr. 6, 1–26 (2018).

    Article 

    Google Scholar
     

  • Zhang, Y. J. et al. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ. Int. 130, 104912 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature https://doi.org/10.1038/s41586-018-0386-6 (2018). This study provides a global estimate of the structure and function of soil bacteria and fungi.

    Article 
    PubMed 

    Google Scholar
     

  • Matson, P. A. A., Parton, W. J. J., Power, A. G. G. & Swift, M. J. J. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Babin, D., Leoni, C., Neal, A. L., Sessitsch, A. & Smalla, K. Editorial to the thematic topic “towards a more sustainable agriculture through managing soil microbiomes”. FEMS Microbiol. Ecol. 97, fiab094 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002). This excellent review shows how the use of chemical fertilizers and pesticides increased with agricultural production over seven decades.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Oehl, F. et al. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl. Environ. Microbiol. 69, 2816–2824 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 21, 973–985 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Verbruggen, E. et al. Positive effects of organic farming on below-ground mutualists: of mycorrhizal fungal comparison in agricultural communities soils. N. Phytol. 186, 968–979 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 1–8 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wittwer, R. A. et al. Organic and conservation agriculture promote ecosystem multifunctionality. Sci. Adv. 7, eabg6995 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fenner, K., Canonica, S., Wackett, L. P. & Elsner, M. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341, 752–758 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Silva, V. et al. Pesticide residues in European agricultural soils — a hidden reality unfolded. Sci. Total Environ. 653, 1532–1545 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Riedo, J. et al. Widespread occurrence of pesticides in organically managed agricultural soils — the ghost of a conventional agricultural past? Environ. Sci. Technol. 55, 2919–2928 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006). This article shows the link between gut microbiota and obesity in humans.

    PubMed 
    Article 

    Google Scholar
     

  • Breidenbach, A. et al. Microbial functional changes mark irreversible course of Tibetan grassland degradation. Nat. Commun. 13, 1–10 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hu, W. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 1–15 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van Boeckel, T. P. et al. Global trends in antimicrobial use in food animals. Proc. Natl Acad. Sci. USA 112, 5649–5654 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Starr, E. P. et al. Stable-isotope-informed, genome-resolved metagenomics uncovers potential cross-kingdom interactions in rhizosphere soil. mSphere 6, e00085-21 (2021).

    PubMed Central 
    Article 

    Google Scholar
     

  • Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076-18 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tang, T. et al. Antibiotics increased host insecticide susceptibility via collapsed bacterial symbionts reducing detoxification metabolism in the brown planthopper, Nilaparvata lugens. J. Pest. Sci. 94, 757–767 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ryan, M. J. et al. Development of microbiome biobanks — challenges and opportunities. Trends Microbiol. 29, 89–92 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • FAO, ITPS, GSBI, SCBD & EC. State of Knowledge of Soil Biodiversity – Status, challenges and potentialities (FAO, 2020).

  • Jones, C. M. et al. Recently identified microbial guild mediates soil N2O sink capacity. Nat. Clim. Chang. 4, 801–805 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Naylor, D. et al. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 45, 29–59 (2020).

    Article 

    Google Scholar
     

  • Banerjee, S. & Siciliano, S. D. Spatially tripartite interactions of denitrifiers in arctic ecosystems: activities, functional groups and soil resources. Environ. Microbiol. 14, 2601–2613 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Six, J., Elliott, E. T., Paustian, K. & Doran, J. W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62, 1367–1377 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Anthony, M. A., Crowther, T. W., Maynard, D. S., van den Hoogen, J. & Averill, C. Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth 2, 349–360 (2020).

    Article 

    Google Scholar
     

  • Wei, Z. et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 1–9 (2015).


    Google Scholar
     

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. Trichoderma species — opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2, 43–56 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saleem, M., Arshad, M., Hussain, S. & Bhatti, A. S. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34, 635–648 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morris, W. E., Uzal, F. A., Fattorini, F. R. & Terzolo, H. Malignant oedema associated with blood-sampling in sheep. Aust. Vet. J. 80, 280–281 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu, T. et al. Bacterivore nematodes stimulate soil gross N transformation rates depending on their species. Biol. Fertil. Soils 54, 107–118 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Edwards, A. A., Mathura, C. B. & Edwards, C. H. Effects of maternal geophagia on infant and juvenile rats. J. Natl Med. Assoc. 75, 895–902 (1983).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibbs, E. P. J. The evolution of One Health: a decade of progress and challenges for the future. Vet. Rec. 174, 85–91 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Dukes, T. W. That other branch of medicine: an historiography of veterinary medicine from a Canadian perspective. Can. Bull. Med. Hist. 17, 229–243 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • World Health Organization. Constitution. WHO https://www.who.int/about/governance/constitution (2021).

  • Zegeye, E. K. et al. Selection, succession, and stabilization of soil microbial consortia. mSystems 4, e00055-19 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article 

    Google Scholar
     

  • Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018). This commentary article highlights how keystone taxa can determine microbiome complexity and functioning. It also discusses the factors that determine their activities.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nuñez, M. A., Horton, T. R. & Simberloff, D. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90, 2352–2359 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Clemmensen, K. E. et al. A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecol. Lett. 24, 1193–1204 (2021). This study shows that the role of mycorrhizal fungi in tundra soil carbon stocks is linked to a tipping point.

    PubMed 
    Article 

    Google Scholar
     

  • Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018). This review provides an assessment of the human microbiome and challenges in our understanding.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *